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ABSTRACT 

Given a pair of an ergodic measured discrete equivalence relation 7~ and 

a subrelation 8 C 7~ of finite index, a classification of the inclusion up 

to orbit equivalence will be discussed. In case of amenable and type III0 

relations, the orbit equivalence classes of inclusions will be completely 

classified in terms of a collection of a subgroup H and a normal subgroup 

Go of a finite group G and an ergodic group (G/Go) extension of a non- 

singular flow. This is a generalization of Krieger's theorem by which orbit 

equivalence classes of single relations were classified. Due to this result, 

essential type III inclusions will be made clear. 

1. I n t r o d u c t i o n  

Given ergodic non-singular transformations R and S of a Lebesgue space, we 

suppose each S orbit is contained in an R orbit. Our concern is to see how mea- 

surably S sits in an R-orbit in view of orbit equivalence. This question has a close 

connection with a classification of subfactors in von Neumann algebra theory. As 

a matter of fact, so called group measure space construction factors by R and S, 

respectively, give us a factor and a subfactor. When we deal with single trans- 

formations R~ orbit equivalence of R tells us a classification of the corresponding 
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factors. But what about the case of pairs of transformations R and S? In this 

setup it is very natural to consider orbit equivalence preserving suborbits. Our 

purpose of this article is to classify suborbits up to orbit equivalence. 

As we are concerned with orbits, we should adopt pairs of a measured discrete 

ergodic equivalence relation 7~ and a subrelation $ instead of R and S. In [Sutl], 

Sutherland claimed that if the number of S orbits in an 7~ orbit is finite then 

the orbit equivalence of an inclusion S C T/ i s  described in terms of the cross 

product of a common subrelation P by a finite group action aa and a subgroup 

action o/H respectively. It is shown in [Ham2] that the collection {P, H C G, aa} 

is uniquely determined up to orbit equivalence. 

Based on these observations, we will show a complete invariant of the inclusion 

S c 7?. of type IIIo amenable equivalence relations in terms of the collection of 

a subgroup H and a normal subgroup Go of a finite group G and an ergodic 

finite group extension of a non-singular flow. This is just a generalization of the 

Krieger theorem [Kri] by which single equivalence relations 7~ are classified in 

terms of a non-singular flow. In type II case, a complete invariant was shown in 

[Ham2] in terms of a finite group G and a subgroup H which does not contain any 

non-trivial normal subgroup of G. This is a generalization of the Dye theorem 

[Dye]. 
Our main theorem is 

THEOREM 6.1: Up to orbit equivalence, conjugacy of subgroups and conjugacy 

of extensions of flows, there exists a bijection T: 

{(T~,S)I T~ and S (C 7~) are ergodic amenable equivalence relations 
of type IIIo and index [7~: S] < c~} 

- - +  

{((G, H, Go), ({Ft}, {St}, 7r) ) [ 
G a finite group, Go a normal subgroup of G and H C G a subgroup 
which does not contain any non-trivial normal subgroup of G, and 
({Ft}, {St}, 7r) an ergodic group (G/G0) extension}. 

Here {St} is an ergodic, non-singular aperiodic flow and { Ft } is an ergodic G/Go- 

extension of{St} and ~r is the factor map, 7rFt = St7r (t E R). 

In [Ham3], the injectivity of the map T is stated in certain restricted cases. 

The surjectivity is seen in [Ham3] and [Sut2, Theorem 2.3 and Proposition 3.1]. 
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Let us explain the content of each section. In section 2, we recall a canonical 

system {P, H C G, c~c} consisting of a common subrelation P,  finite groups H C 

G and an outer action (~G of P to describe the inclusion $ C T~ ([Sutl],[Ham2]). 

Also minimal group covers of finite extensions of transformations are discussed 

and the uniqueness of the cocycle equipped with a minimal group cover will be 

crucial in the proof of injectivity of T. 

In section 3, we show the associated flow {Ft ~} of the subrelation P is an 

ergodic finite group extension. 

In section 4, we show a common discrete decomposition of the equivalence 

relations ~ ,  S and P by using a lacunary measure. Their associated flows are 

represented by flows built under functions with a common ceiling function deter- 

mined by the lacunary measure. 

In section 5, when the group extension of the flow of data T(7~, S) is given in 

terms of flow built under functions with a common ceiling function, we recover 

a corresponding lacunary measure, by which the group extension of the flow 

is defined. This construction will play an important  role in proceeding with a 

copying lemma in the proof of the main theorem. 

In section 6 we prove our main theorem. In the proof of injectivity of T an 

idea of a copying lemma is efficiently used by the use of a lacunary measure 

constructed in section 5, as in [KaWe] where Y. Katznelson and B.Weiss showed 

a simple proof of the Krieger theorem [Kri]. 

In section 7, we apply our main theorem for the splitting problem, that  is, it 

is natural  to ask when an inclusion of a type IIIo equivalence relation T~ and a 

subrelation S comes from a type II  inclusion by taking respectively a product 

with a common type III0 equivalence relation. 

In section 8, we investigate essential type III  inclusions of subrelations. Quite 

easily we see that  there are lots of non-splitting inclusions. This fact is known by 

Kosaki and Sano [KoSa] in a different way (using higher relative commutants) .  

Some of the results in this article were announced in [Ham3]. 

2. P r e l i m i n a r i e s  

Let ~ be a measured discrete equivalence relation (which we simply call a 

relation) of a Lebesgue space (X, 13, m). For each x C X we denote the ~ -o rb i t  

{yl x) e 
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of x by T~(x). It  is known that  there is a non-singular action of a countable group 

F of X such that  

= {Txl  7 • r }  a.e. x 

([FeMo]). When the action by F is ergodic, we say T~ is ergodic. By 5re(y, x) we 

denote the Radon-Nikodym derivative d~--~-atX~ where y = 7x (7 • F). Of course, d r a  k 2 ~ 

both the ergodicity and the above description of the Jacobian do not depend on 

a choice of F. ~m(Y, x) is a cocycle of 7~. If F can be chosen as the group Z, then 

7~ is said to be amenable. 

Definition 2.1: By a partial transformation ¢ we mean a collection of measurable 

subsets A and B and a bijection ¢: A ~ B such that  

¢(x) E 7~(x), a.e. x E A. 

We write Dom (¢) = A, Im (¢) = B and denote the set of all partial transfor- 

mations ¢ by [T~].. In particular, the set of all transforamtions ¢ E [T~]. such 

that  

Dom(¢) = Im(¢) = X (up to a null set) 

is denoted by [7~] and is called the full group of 7~. A non-singular transformation 

¢ satisfying 

¢(T~(x)) = 7~(¢x) a.e. x 

is called a normalizer of T~ and the set of all normalizers of T/is denoted by N[~] .  

Det~nition 2.2: Given a measured discrete equivalence relation S with S C 7~, we 

simply call it a subrelation. 

Definition 2.3: Let 7~ (resp. T~ t) and S (resp. S ' )  be a relation and a subrelation 

on X (X') .  If  there exists a measure space isomorphism ¢: X --+ X '  such that  

= ¢ ( S ( x ) )  = s ' ( ¢ x )  

we say that  the pairs S C T /and  8 / C 7~ I are orbit equivalent. 

For an ergodic relation 7~ and a subrelation S, the measurable function x E 

X ~-~ ~({$(y)l(y,x)  E 7~}) is defined and constant < c~ a .e .x .  By [7~: S], we 

denote this constant and call it the index of S c :E. Of course, the Jones index 

([Jon]) of the Krieger factor and the subfactor constructed from each relation is 

equal to [T~: 8]. 
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THEOREM 2.1 (Sutherland [Sutl]): Suppose Tt and S are ergodic and [T~: S] < 

co. Then there exist an ergodic subrelation 7 ) of S, a finite group G and a sub- 

group H, and an action g E G ~-~ a s 6 N[7 )] satisfying the following conditions 

(1) and (2): 
(1) aG is outer, that is, i f  ag • [7 )] then g = e. 

(2) T~ = 7 ) ×~ G, $ -- :P ×~ H where P ×~ G means an equivalence relation 

defined by P ×~ G(x) = Ugea "P(agX). 

Actually this theorem is more strengthened in the following: 

THEOREM 2.2 ([Ham2]): 

1. Under the same assumption as in the previous theorem, we have a 

collection {P, H C G, a c }  satisfying the following condition (3) in addition 

to (1), (2) in the previous theorem: 

(3) H does not contain any non-trivial normal subgroup of G. 

2. A collection {7 ~, H c G, aG } satisfying (1), (2) and (3) is unique in the sense 

that i f  S C Tt and S' C R '  are orbit equivalent, then there exists a measure 

space isomorphism ¢: X --* X '  and a group isomorphism 7: G -~ G' with 

7(H) = H' satisfying 

¢[p ]¢ -1  = [p,], 

(~ OLg t~ - 1  ! • • = a ~ ( g )  (g  • G ) .  

Definition 2.4 ([Ham2]): We call the collection {Ta, H C G, a a }  the canonical 

system for the inclusion S C T~. 

We recall a couple of notions related to extensions of non-singular transforma- 

tions. Let S and T be non-singular transformations of Lebesgue spaces (Y, 5 r ,  p) 

and (X, B, m), respectively• We suppose T is a finite extension of S. That  is, 

there is a measurable, non-singular and finite to 1 surjection lr: X -~ Y satisfying 

~r- T = S .  ~. (S and ;v are called a factor of T and a factor map, respectively). 

Sometimes we call the collection (T, S, ~r) a (finite to 1) extension. Since the 

measurable function y • Y ~ [~-l(y)[ is S-invariant, lr is almost everywhere 

constant to 1 if S is ergodic. In this case, T and X may be assumed to be of the 

form: 

X =  Y x { 1 , . . . , k } , T ( y , i ) = ( S y ,  a (y , i ) ) ,~r (y , i )=y ,  (y,i) 6 X  

where a(y, i) 6 { 1 , . . . ,  k}. 
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Definition 2.5: Extensions (T, S, ~r) and (T', S', 7d) are said to be conjugate if 

there is a pair of measure space isomorphisms (¢, ¢): 

¢ : X - - + X ' ,  ¢ : Y - - + Y '  

such that each of them is a conjugacy map: 

¢ . T = T ' . ¢ ,  ¢ . S = S ' . ¢ ,  

and such that  

~'.¢=¢.7r. 

We call the pair (¢, ¢) a conjugacy map of extensions. 

Definition 2.6: When T is of the form: 

TG(y,g) = (Sy, g .~ (y ) ) ,  (y,g) e Y x G 

where G is a finite group and a(y) E G, T or (TG, S, ~r G) is called a (finite) group 

extension (or a G-extension) of S. Here 7rC(y,g) = y is a factor map. If H is a 

subgroup of G, then we call a transformation 

TH(y, [g].) = (Sy, [g~(Y)]H), (y, [g]H) • Y × G / H  

the isometric extension of S determined by H, where [g]H means a right coset 

Hg and G / H  the right coset space. In this case the map 7rH(y, [g]u) = Y is a 

factor map. Of course, the map ~r~l(y,g ) = (y, [g]H) is a factor map, too. 

An action of G defined by 

LAy,  I )  = (y ,g / ) ,  g • e 

is called the left translation. 

Definition 2. 7". If an ergodic extension (T, S, 7r) admits an ergodic finite group 

extension TG of S, the isometric extension (TH, S, ~r H) of S by a subgroup H C G 

and a conjugacy map 0: Y x G / H  --~ X,  T .  ¢ = ¢ .  TH, satisfying 7r. ¢ = 7r H, 

then we call the collection (Ta, S, ~r G, H) a group cover of (T, S, 7r). 

Definition 2.8: A group cover (TG, S, 7r a, H) of (T, S, 7r) is said to be minimal if 

for any group cover (TG,, S, r G' , H')  of (T, S, ~r) there exists a non-singular map 

(I>: Y × G' --* Y × G ~, which is not necessarily invertible, such that  (I). Ta, = TG. ¢, 
G' 7rH G .(I) = (¢-1 .¢,).TrH, where ¢ (resp. ¢') is a conjugacy, T . ¢  = ¢'TH,  r . ¢  = r H 

(resp. T .  ¢' = ¢ ' .  TH,, ~r. ~)' = r H'). 
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PROPOSITION 2.1: Let (TG, S, 7c G) and (TG,, S', 7r a') be finite group extensions. 

Suppose there are a group isomorphism p~: G --* G' with p~(H) = H ~ and a con- 

jugacy ¢: Y ~ }:'~ of S and S ~. Then there exists a measure space isomorphism 

¢: Y × G --* y t  × G' such that (¢, !/,) is a conjugacy of these group extensions 

and such that 

0 .  L~ = L#(g) . ¢  (g E G) 

if  and only if  cocycles pt(a) and a~(~/,) are cohomologous, that is, there exists a 

measurable function #: Y --~ G ~ such that 

Proo~ 

p'(~(y)) = v'(~). ~ ' (¢y) .  v'(S~) -~, 

(¢=:) It suffices to set 

¢(y, ~) = (¢y, p'(g), v'(~)). 

a .e .y .  

(=v) It suffices to define a measurable function # :  Y --* G ~ by 

¢(y, e) = (¢y,  v'(~)). . 

The following Theorem 2.3 and Theorem 2.4 show us that every ergodic finite 

extension can be realized by an isometric extension by a subgroup and that the 

cocycle of the group extension is uniquely determined up to cohomology. 

THEOREM 2.3 ([Ham4]): Let (T,S,  Tc) be an ergodic finite to one extension. 

Then, there exists a group cover (TG, S, IrG, H) of (T ,S ,  1r) satisfying the 

condition that H does not contain any non-trivial normal subgroup of  G. 

More important is that  the cocycle a and the groups H and G are uniquely 

determined by the condition in Theorem 2.4: 

THEOREM 2.4 ([Ham4]): A group cover (TG, S, zcG, H) of an ergodic finite 

extension (T, S, 7r) is minimal i f  and only i f  H does not contain any non-trivial 

normal subgroup of G. In this case the groups G, H and the cocycle a o f T a  are 

uniquely determined, that is, i f  we let a ~ be a cocyele of  another minimal cover 

(Ta,, S, ~r a', H') of (T, s, 7c) then there exists a group isomorphism rl: G' -* G 

with ~(H')  = H and a measurable function v: Y ~ G such that 

~(~'(y))  = v (~ )~ (y )v (S~)  -1 a . e .y .  
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Remark 2.1: If (T, S, r)  is a normal extension then the subgroup H of the minimal 

group cover (Tc, S, ~r C, H) of (T, S, ~r) is trivial ([Ham4]). In this case the theorem 

is known in Theorem 6.2 of [Zim]. 

Remark 2.2: As remarked in [Ham4], Theorems 2.3 and 2.4 are also true for 

flows. 

3. Flows associated w i t h  a canonica l  s y s t e m  

Let us briefly recall the construction of the associated flow F 7~ = {Ftn}tea of a 

relation T~ of a Lebesgue space (X, B, m). 

Definition 3.1: On the product space X x R a relation 7~ is defined by 

((y, v), (x, u)) E T~ i f (y ,x )  E n  and v = u - l o g ~ m ( y , x ) .  

By ~ ( x , u )  we denote the 7~-ergodic component containing a point (x,u) E 

X × R. By Z n we denote the quotient space of X x R by the partition of all 

7~-ergodic components. We identify by each ~7~(x, u) a point in Z n and consider 

the map ~ :  (x, u) E X x R --* ~ ( x ,  u) E Z n the natural surjection. 

Definition 3.2: The factor flow 

e + t )  e Z (t e m 

is called the associated flow of T~ and denoted by F n = {Ftn}tea. 

Let ~ and $ be a pair of an ergodic relation and a subrelation of finite index 

and let {7 ~, H C G, no} be the canonical system of the incusion S C ~ .  

Definition 3.3: The group G acts on X x R by the skew product 

&9:(x,u) E X × R ~ ( a g x ,  u- log~m(agx ,  x ) ) E X x R  (g E G). 

Since ag E N[P], a factor transformation ~f~(x, u) --~ ~#(&g(x, u)) is defined and 

it commutes with the  flow Ft p. By 

mod~ a 9 

we denote the factor transformation acting on Z p. We define 

G o = { g E G  I m o d ~ a g = I d }  
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which is a normal subgroup of G. We also denote the quotient group G/Go by 

K and the subgroup {[h]Got h E H} by L, where [g]G0 is the coset Go "g. We 

set, for each q E K, 

A q  = mod# c~ 

where g E G with [g]c0 = q. Obviously, AK is a free action of the group K which 

commutes with the flow Ft ~. 

We have three flows FT,, F s and F T¢ associated with the canonical system 

{P, H C G.ac}.  If we observe the inclusions 

¢#(x, u) c CAx, u) c (~(x, u), 

then maps ~rnP: ZT, --+ 2 n,  ~rP: ZT, --~ Z 8 and ~-~: Z s --* Z f~ are naturally 

defined by 
~ :  ¢~(x, u) -~ ¢~(x, u), 

~ :  @(x,~) -~ ¢~(~,~), 
~ :  @(x, u) -~ ¢~(~, ~). 

As a matter of fact, this observation will work well for getting a complete invariant 

for orbit equivalence of inclusions. 

THEOREM 3.1: The flow jvT, is a K-extension 9 f  the flow j :n ,  and 

(~7,, }-T~, 7r~, L) is a group cover of the extension CT s .T n ~r s \ , , "RJ" 

Proof: Since AK freely acts on the flow space ZT,, we get a cross section E C 27, 

of positive measure for this action. Let ~75(x, u) E ZT,, then q E K is uniquely 

determined by 

Aql i# (x ,  u) E E. 

In other words, the singleton {Aq~@(x, u)} is the intersection of the AK-orbit 

of the point (#(x, u) and the set E. Therefore we can define measure space 

isomorphisms ¢7,: 27, ~ E x K,  ¢,s: Z "s ~ E × K / L  and Cn: Z n ~ E by 

setting 
Cp:  (~(x ,u)  --+ (Aql~75(x,u),q) E E × K, 

C s :  ¢$(x, u) ~ (Aql(~(x, u), [q]L) E E × K / L ,  

Cn : (fi(x, u) ~ dql¢~(x ,  u) E E. 

A remarkable and simple fact is that the action q E K ~ ¢7,. Aq • ¢~ 1 is the left 

translation Lq, q E K,  of E × K. Let us check it. 

¢7"  Aq, . ¢~,l(Aql¢#(x,  u), q) = ¢7,. gq,¢75(x, u). 
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Since A~lq(Aq,~(x, u)) = A q l ( ~ ( x ,  u)) e E, 

¢~ . Aq ,~(x ,  u) = (A~ 1 (¢~(x, u)), q' q) = Lq, ( A q l ~ ( x ,  u), q). 

Next, we are going to show that  F ~' is a K-extension of F 4. By 7r K we denote 

the projection map (z, q) E E x K ~ z. We see that F 4 is the factor flow of F p 

acting on the quotient space of Z p taken by the decomposition by Ag-orbits. 

This means 

r :  = , 4 .  

Therefore ~K.  ¢~,. Ft ~ . ¢ ~ ( z ,  e) = 7r g .  ¢ ~ .  FtV¢~,(x, u) = ¢ 4 F t n ~ ( x ,  u) = 

C n F ~ ¢ ~ l z ,  where ~pv~(x, u) = (z, e). Hence, we may write 

CvF~¢~ l ( z ,  e) = ( ¢ 4 F ~ ¢ ~ l z ,  k(t, z)), 

where k(t, z) E K. For any q E K, 

¢ ~ F ~ ¢ ; l ( z ,  q) = LqCpFt~¢~ 1 (z, e) 

= ¢pAqFt~¢~I(z, e) 

= CpF~Aq~pTpl(z, e) 

= CpFtV¢~lLq(z, e) 

= Lq(¢nFtn¢~lz,  k(t, z)) 
T¢ - 1  = (¢4Ft ¢ 4  z, q. k(t, z)). 

Thus the flow F ~  is a K-extension of the flow Ftn. Finally let us check that the 

flow F s is an isometric extension determined by the subgroup L. To see this, we 

note that  

In fact, 

and 

~ .  ¢~l(A-~l¢~(x, u), q) = rPs~O(x, u) = ~g(x, u) 

¢~1.  rg (Aql~5(x ,  u), q) = ¢~l(Aql~5(x,  u), [q]L) ---- ~,~(X, U). 
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Therefore, 
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S -1 .s -1 K ~'sF~ g;s (z, [q]L) = ~sFi  gzs ~rL (z, q) 
S P - 1  = C s F  i 7r s ~b.p (z, q) 

~1. 7rT~ ~ 7 3 . 1 . - 1 /  Z ='q;S S t '~p k ,q) 

= 7~ K ' h  F ' J ) - I . - I / z  
L ~73 t qJ7 ~ ( , q )  

= ( ¢ n F n V ~ l z ,  [q. k(t,  Z)]L). II 

Suppose S C Ti and $~ C 7~' are orbit equivalent. Then the PROPOSITION 3.1: 

corresponding subgroups H C G and H ~ C G ~ are conjugate and the extensions 

(F p, F ~, 7r~) and (F  p '  , F n '  , 7r~P',) are conjugate. 

Proof: It  follows from Theorem (2.2) tha t  there exist a measure space isomor- 

phism ¢: X -* X t and a group isomorphism p: G -* G ~ with p(H) = H ~ such 

tha t  

1. ¢ [ p ] ¢ - 1  = [p,], 

2. ¢ . a g  • ¢ -1  = a~p(9) (g • G). 

Define a measure space isomorphism ¢: X × R ~ X '  × R by sett ing 

()(x,u) ( ¢ x , u  " d m ' ¢ ,  ,'~ 
: _ ,og- m x  ) 

The map  ~ induces a measure space isomorphism Z ~ ---* Z ~'' by restricting ¢ to 

the quotient  space Z ~, in such a way tha t  

u) @,($(x, u)). 

By ~ we denote this restriction. We also restrict ¢ to the quotient  space Z T¢ in 

such a way tha t  

U U 
gEG gEG 

By ~ we denote this restriction Z n --, Z n ' .  Then it is not  difficult to see tha t  
-p, -p, T¢~ 
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4. Common discrete decomposit ion 

From the assumption that  7~ is of type III0, i t  is well known that  T~ admits 

an equivalent a-finite lacunary measure # so that  almost every ergodic measure 

appearing on each ergodic component of the ergodic decomposition of the measure 

d# × e~du is non-atomic (and a-finite, infinite). As ~ c  is a finite group action, 

we may assume that  # is an aa- invar iant  measure. Othewise, we replace # by 

the average of the measures # .  ag, g E G. The measure obtained in this way is 

also a lacunary measure for 79. 

In the case of a single relation, so-called discrete decomposition of the rela- 

tion ([HaOs]) is known. As for a pair of a relation and a subrelation, we will 

have a corresponding common discrete decomposition. We also represent flows 

F ~', F s and F n and in terms of flows built under functions with a common 

ceiling function. This will help us show our main theorem. Set 

79g = Ker(~g) = {(z,x) E 791~#(z,x) = 1}, 

then 79~ is a subrelation. Likewise, T~u and Su are defined. The discrete decom- 

position of 79 tells us that  79 admits an R E N[79~] M [79] and c > 0 satisfying 

log 6u(Rx , x) = min{log 6u(y, x)lY E X, (y, x) E 7 9, 6u(y, x) > 1} > c, 

and 

We set 

P ×RZ. 

S (x) = log 5 (Rx, x). 

We note that  f f ( x )  is a Pu-invariant function. 

LEMMA 4.1: The measurable function f~(x) is ac-invariant. 

Proof'. Let (y, x) E T~. Then, y is of the form y = agz for some 9 E G and z 

with (z, x) E P.  Since 

we see that  for a.e. x, 

f~(x) = min{log6~(y, x)i(y, x) E n ,  6u(y , x) > 1}. 
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Hence, for any g • G, 

S f ( a : )  = log 5, (na~x,  a : )  

= log 5t,(Ragx , x) 

>_ min{log 6 u (y, x) l(y , x) • 74, 6~, (y, x) > 1 } 

=:y(x). 

As G is a group, the inequality is actually the equality. I 

LEMMA 4.2: ac  C N[7)t, ]. 

Proof This follows from aG C NIP] and that # is aG-invariant. I 

Definition 4.1: For each x • X, we denote by (p , (x )  the 7Vu-ergodic component 

containing x. W ~. is the quotient space of X by the partition consisting of all 

Pu-ergodic components. As usual each (~,  (x) is identified with a point in W pÈ . 

Likewise, W G  and W TG are defined. 

By Lemma 4.1 and Lemma 4.2, we see that f~P is a function of W rG, that  is, 

there exists a measurable function f of W nÈ such that 

LEMMA 4.3: 

f~ (x )  = f(@G (x)). 

~g. R.  G 1 • R. [P,] (9 • C). 

Proof'. Since agRx • P(aax) and Ragx • P(agX), (Ragx, agRx ) • 79. We 

have 

6u ( Ragx , agRx) = 6,( Ragx, agX)Su(OlgX , x)Su(x , Rx)6u( Rx, aaRx ) 

= 6(nx, x). 1.6(x,  Rx). a = 1. 

That  is, (Raex , aaRx ) • 7a u. I 

We are ready to present a common discrete decomposition for both 7"4 and S. 

PROPOSITION 4.1: 

R • Y[Pu] N N[$,] M N[T4,], 

1 G = P , x ~ G ,  r4= (P, x~ G) xn Z 

and 

$~ = T)~ x~ H, S =  (P~ x~ H) xn  Z. 
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Proof: It immediately follows from R-I[P~]R = [P~] and R - l a g R  E [P~]ag 

that  R e N[Y'~ ×~ G] M N[P t, ×~ H]. 1 

Definition 4.2: Let P~ W p. 7rs~ : ~p, (x) E --+ ~S,(X) E W s" be the the natural 
8, 

surjection. Likewise r~r~ ~ is defined. The transformation R induces factor tran- 

formations U p. ,  U s .  and Urn, of W p. , W s.  and W To. respectively as follows: 

U p- (¢p, (x)) = Cp, (Rx), 

v s" (¢s. (~)) = Cs. (R~), 

u ~ , ( ¢ ~ ( x ) )  = ¢7~ (Rx). 

Definition 4.3: Due to Lemma 4.3, the action aG induces a group action on W pÈ 

as its factor: 

modp,  ag: ~p, (x) • W p. ~ ~p, (agX) • W p", g • G. 

It is easy to see that 

Go = {g • G] modp, a 9 = Id}; 

we obtain a free action/~K of the group K of W p. defined by 

/3[dao = modp,  ag, [g]eo • K. 

By Lemma 4.3, each fl~, r • K, commutes with U p. .  

We need a terminology on flow built under a function. 

Definition 4.4: Given a measure space W and a non-singular transformation U 

and a measurable function f defined on W and of positive values we set 

(W, f )  -- {(w, u)l w • W, 0 < u < / ( w ) } ,  

and denote by {(W, U, f ) t} teR the flow built under functions with a ceiling func- 

tion f and a base transformation U. We denote by f (n ,  w) the cocyle determined 

by f and U, that is, f(1,  w) = f (w) ,  f(2,  w) = f (w)  + f (Uw)  and so on. 

The following proposition describes Theorem 3.1 in terms of flow built under 

the function. 

PROPOSITION 4.2: Let # be an equivalent a-finite lacunary measure of T£ which 

is ac  invariant. 
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i. There exist an ergodic non-singular transformation U of a measure space 

E and a group extension UK: (a;, q) • E x K --* (Ua;, q. k(a;)) • E x K 

and a conjugacy map (~bp, ~bn) of the extensions (U p. ,  U rG 9. ,7rn.) and 

(UK, U, 7r K) such that 

"~/'9 " flq = Lq . ¢9  (q • If).  

2. The flow spaces Z p and Z ~e are naturally identified with the spaces 
P.  

(W 9. , f . ~r~. ) and (W n-  , f )  respectively, on which each flow built under 

a function acts. Through this identification, 

(g'p x Id) .  F ~ -  (~/'v x I d ) - '  = (E x I(, UK, f(~o) x Id)t, 

(t/'n x Id) .  Ft ~ .  (~,~ x Id) -1 = (E, U, f(w))t ,  

(¢9  x Id)- Aq. (~/,p x Id) -1 = Lq x Id, q E K 

where Aq is identified with flq x Id. 

Proof: (1) Consider a partition {Ugeaffg,(agx)l  x • x }  of x .  Since G 

is finite, this is a measurable partition. Actually, each set Ugea ~9,(agX) = 

UqeKflq~9 , (x) coincides with the ~ x~ G-ergodic component ~r G (x). Since flK 

is a finite group action, one can get a cross section E C W ~" of positive measure, 

i.e. each ill,--orbit only once intersects with E. flK is free. So, there exists for 

each ~p,(x) a unique q • K such that flq-,~p,(x) • E. Hence, W 9. is identified 

with E x K by the measure isomorphism: 

¢v . ( x )  • w 9.  (Zq - ,¢p . ( x ) , q )  • E × I;. 

Then, for each q' • K 

flq,'~/,~l(flq-l~p, (x),q) = flq,¢p, (x) 

= g,~lCp~p,(ag,x) (where [g']ao = q') 

= q'q) 

= Cp ILq, (flq-~ Cp, (x), q), 

that  is, flK is conjugate with the left translation LK. 

Define a non-singular transformation U acting on E and a measurable function 

E E ~ k(w) e K by setting 

(U~d, k(ad)) : 1~p" U p .  • @pl(a), e), ~ C E ,  
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where e is the unit of K. Let UK be a group extension 

Ug(w,q) = (Uw, q" k(w)), ((w,q) E E x K). 

Then for each q E K,  

Cv. uP . .  ~ ( ~ ,  q) = ~ .  uP . .  Zq. ¢~(~ ,  ~) 

= Cp .  ~q" U p" .  ~)~l(w, e) 

- - - -  Cp./~q-~)~1 (Vo3, k(W)) 

= (Uw, q. k(~z)) = UK(W, q). 

Therefore, ¢p  is a conjugacy map of U p" and UK. By eta, we denote a measure 

space isomorphism: 

u)u: Cu.(y) E W u. --, ~ E E 

where w E E and q E K such that ~T¢, (y) = UqeK/3qw. Then we easily see that  

these satisfy 

"P. =TrK ~ "  ~ .  • ~v- 

Let us check that  ~bT¢ is a conjugacy map. 

~n, (Y) = UqeKl3qw. Then, 

¢~.(Ry) = U~.¢~.(y) 

=UP"( U zq~) 
qEK 

= U ¢~*" ¢PuP"¢; '" Cp(Zq~) 
qEK 

= U ¢~,'(Uw, q" k(w)) 
qcK 

= U 
qEK 

Let ~n,(Y) E W T~., w E E and 

= uS" ( U zq~) 
qEK 

= U u~"~q ~° 
qEK 

= U ¢#u~(~ ,q)  
qEK 

= U ~q.k(~)Uw 
qEK 

Thus, 

~ U  ~" (¢~, (y)) = ~ ( ¢ ~  (Ry)) = Uw = U ~ ( ¢ ~ ,  (y)). 

(2) immediately follows from (1). I 
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5. L a c u n a r y  m e a s u r e  

Let ~ and S be an ergodic relation and a subrelation of a measure space (X, B, rn) 

with index [7¢: S] < oo. Let {P, H C G, av}  be the canonical system for the 

inclusion $ C T~. We may assume m is aa-invariant and otherwise replace m by 

the average of the measures m.ag ,  g E G. Let Go, K, L be defined as in section 3. 

Suppose that there exist a K-extension UK(z, q) = (Uz, q.k(z)), ((z, q) C E × K) 

, a measurable function f ( z )  on E with in f f ( z )  > 0 and that the extension 

(F p, F n, 7r~) is conjugate with an extension between the corresponding flows 

built under a function. Then a natural question, how we recover an equivalent 

a-finite lacunary and av-invariant measure p so that UK, UL, U and f coincide 

with ones in Proposition 4.2, arises. In case of a single relation TO, this is known 

(e.g. [HaOs]). For simplicity in this section let us denote the flows built under 

functions (E × K, UK, f ( z )  × Id) and (E, U, f ( z ) )  by {Bt K} and {Bt}. 

THEOREM 5.1: As above we suppose that the extension (FP, FT¢,TrPn) is con- 

jugate with the extension (B K, B, Tr K x Id). Then there exist an equivalent 

a-finite lacunary and aa-invariant measure # and measure space isomorphisms 

Cn: W n~ -~ E, ~bp: W p~ ~ E × K satisfying the following properties: 

1. (~pp, ~bn) is a conjugacy of extensions (U ~ ,  Un~, 7rn~ ) and (UK, U, ~rK). 

2. •-p . flq = Lq . Cp. 

3. I f  R E N[:P~] A [P] is the corresponding normalizer admitted in the discrete 

decomposition of P with respect to #, then 

d # R ,  , 
og --~-~ (x) = f(¢vC(;T~, (X))). 

After a couple of lemmas, the proof will be completed. First of all, due to 

Proposition 2.1 and Theorem 2.4, a conjugacy of group extensions implies that 

there exists a conjugacy map ( rp ,  r n )  of both the extensions, where rp :  W 9.  --+ 

E × K and r7¢: W n~ --* E, satisfying 

7rp . Aq . 7rp I = Lq x Id (q E K).  

We define measurable functions x E X --* ~(x) E E, x E X ~ q(x) E K and 

x E X --* r/(x): 0 _~ ~/(x) < f (~(x))  by setting 

7rp(f~(x, O) = (~(x), q(x), ~l(x)). 
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LEMMA 5.1: 

Proof'. 

T. HAMACHI 

~ ( ~ x )  = ¢(x), ~ ( ~ 1  = ~(x), q ( ~ x )  = [g]ao" q(x). 

LEMMA 5.2: There exists 

P --+ n(x,  y) • Z such that 

Hence 

Isr. J. Math. 

r/(x) = ~/(y) + log 6re(x, y) - f ( n ( x ,  y), ((y)) .  

In this case, 

u~(~,y)¢(y) = ; (x) ,  a.e. (z ,y)  • p .  

Proof'. We note that for (x,y) • P,  Biog~.~(~,y)" ~rp(y,O) = rp(x ,O).  So, 

(¢(X), q(x), rl(X)) =Slog  5~ (z,y)(((Y), q(Y), ~(Y)) 
=(Un((y),  q(y).  k(n, ((y)) ,  n(Y) + log 6m(X, y) - f (n ,  ((y))  

where k(n , z )  • K is the cocycle defined by k(z) and U, that is, k(1, z) = 

k(z),  k(2, z) = k(z) . k(Uz) etc. and n = n(x,  y) is such that 

f ( n , ( ( y ) )  < n(Y) + lOghm(X,y) < f ( n  + 1,¢(y)). 

and 

n(x) = n(y) + log ~m(x, ~) - f (n ,  ¢(y)). I 

Now we are going to define equivalence relations on X x Z. An equivalence 

relation P is defined by 

((x, l), (y, l - n(x,  y)) e P if (x, y) • P. 

Let R and ~g, g • G be the transformations of X x Z defined by 

R(x, l) = (x, l + 1), (x, l) • X × z 

~g(z ,  z) = (agz,  l). 

We see that  R E NIP]. Therefore, the relation P x ~  Z is defined and denoted 

by G(P). Clearly, a a  C N[G(P)]. So, relations G(S) = G(P) x~-H and G(7~) = 

G(P) x~-G are defined. 

( ( (c~x) ,  q ( ~ ) , , l ( ~ x ) )  = ~ , @ ( ~ ,  o) 

= 7rp. A[g]a ° (;5 (x, O) 

= (L[g]G ° × Id).  r p ( # ( x ,  O) 

= (((x), [g]Go " q(x), 71(x)). | 

a uniquely determined cocycle n: (x ,y)  
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LEMMA 5.3: For a.e. x, there exists y such that (y, x) • P and n(y, x) = 1. 

Proo~ Set 

Eo = ( (x ,u )  • X × RI - ~(x) _< u < -~/(x) + f (¢(x))}  

and 
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Proof  of  Theorem 5.1: On the measure space X × Z we define an inclusion G(S) C 

G(7~), whose canonical system is (G(P),  H C G,~G).  We will show that  the pair 

of a relation and a subrelation admits a lacunary measure ~ corresponding to the 

measure in Proposition 4.2 and that  the inclusion G(S) C G(T~) is orbit equivalent 

with 8 C 7~. 

Consider a a-finite measure ~ on X x Z defined by 

d-fi(x, i) = dm(x)e  -~(~)+ I(i'~(~)). 

The measure ~ is 7) ×~-G-invariant and G(P)-lacunary. In fact, for (x, y) • 7) 

and 

d (y, i - x ) )  = 

d (N(x, i)) = 

dm(y)e-n(u)+ f(i+~(y,~),~(y)) 

dm(y)e¢(y,x) -n(y)+ f(i+n(u,~),~(y)) 

dm(y)e-n(~)-  f (n(~,y),¢(y) )+ f ( i+n(x,y),¢(y) ) 

drn(y)e-n(~)+ f(i,¢(x)) 

dm(otgx)e-~(~gx)+ f(i,¢('~g~)) 

dm(x)e-V(~)+ /(i,¢(~)) 

d (x, i), 

R (z, l) = e s(v'¢(~)), 

E1 = ( (x ,u )  • X x RI - n(x) + f (~(x) )  _< u < - r / (x)  + f (2 ,~(x))} .  

Then the smallest 75-invariant set containing E0 is the whole space X × R. In 

particular, for almost every point in El ,  its 75-orbit intersects with E0. Therefore, 

for a.e. x • X,  there exists a t • R and a y • X such that  (x, y) • 7 ), (x, t) • 

El ,  (y, t - log6m(y, x)) • E0. Hence, ((x, f (~(x) )  - ~l(x) + ~(y)), (y, 0)) • 75 and 

~(y) < log 6re(y, x) < ~I(Y) ÷ fQl(x)) .  Hence n(y, x) = 1. II 
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where the right hand admits a positive lower bound > 1. We note ~(:P)~ = P. 

Therefore, G('P) = 7 ) z ~  Z = G(:P)V x ~  Z. 

Next, we consider a measurable partition of X x Z consisting of all G(P)~ 

ergodic components. As usual, we denote for each (x, i) E X x Z, the ~(/))V 

ergodic component containing (x, i) by ~6(p).~(x, i). On W~(P)~, W6(8)~ - and 

Wg(n)~ respectively we define non-singular transformations Up, Us and Un  by 

setting 

U p( ~(p)_~(x, i) ) = ~6(p)_:(x, i + 1), 

Us(¢~(s)-~(x, i)) = ~6(s)_6(x, i + 1), 

and 

-On(~(r~)_6(x, i)) = ~(n)~(x,  i + 1). 

The action Ko induces a free action ~K on W~(P)~ by 

fltg]Go ~g(p)~(x, i) = ~(p)~_(agx, i). 

Consider maps Op: w~(P)~ - ~ E x K and On: W~(ra)~ -* E defined respectively 

by 

0p(¢~(p)~(x, 0)) = (¢(~), q(x)),  x e x 

and 

o~(¢~(u)~(x,O)) = ¢(x), z e x .  

We know that  for a.e. (x, i) E X × Z there exists a point y E X such that  

((x, i), (y, 0)) E P. Therefore maps 0p and On are well defined measure space 

isomorphisms and satisfy 

o~,g~(¢~{v)~(x,  o)) = o~,(¢~<v)a(~, 1)) 

= Op(¢~(v)~_(u, o)) 

= (¢(~), q(y)) 

= UK(¢(X), q(x)) 

= U~:O~,¢~(V)'~(x, 0), 
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where (y, x) E P and n(y, x) = -1 .  Moreover, 

0~,~[91~ ° (@(~)~(x, 0) )  = e~@(~)~(%x, o) 

= (C(%x), q(%x)) 

= (C(x), ~([g]~o)q(~)) 

= L[~]~ o (C(x), q(x)) 

= L[~I~ ° 0~,@(p)~_(x, 0). 

Therefore, 
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= u~{o~ ,~(¢~(~ , )~ (~ ,  o)){ q e K }  

= UK{Lv(q)Op(~6(~,);(x, 0)) I q E K} 

-- UK{iv(q)(~(x),q(x))[ q E K} 

= u K ( { ¢ ( / ) }  × K) 
= a ¢ ( x )  

= u o ~ ( C ~ ( ~ ) ; ( x ,  o)).  

Next consider the restriction of the inclusion ~($)  C G(T~) to the set X × {0}. 

Since ~(S) is of type III, there exists a u E [~(S)]. such that  Domu = X × Z, 

Imu  = X × {0}. If we identify X x {0} with X, then the restriction G(T~)]x×{0 } D 

~($)lxx{o} is nothing but  T~ D S. Therefore, ~(7~) D G(S) is orbit equivalent 

with T~ D $. These pairs of a relation and a subrelation admit the canonical 

systems ( P , H  C G, aG) and (G(P) ,H  C G ,~c ) .  Thanks to the uniqueness 

of a canonical system (Theorem 2.2), we have a measure space isomorphism 

v: X -~ X × Z and a group isomorphism p of G preserving the subgroup H such 

that  
v .  [ ~ ] .  v - 1  = [ ~ ( p ) ] ,  

v . a p ( g ) - v  - 1 = ~ g ,  V g E G .  

Finally, we define a measure # and a normalizer R by setting 

~(.) = ~(v(-)), 

R = v -1  . - R . v .  

Then v -1-  [P] .v  = [G(P)g] • v = [P,], and hence 

P-----V -1  " ~ × ~ Z ' v  = V -1  " ~ ' V  ×R Z = ~:). x R Z .  



270 T. HAMACHI Isr. J. Math. 

The isomorphism v: X --* X x Z induces a measure space isomophism VT~: W 9~ --* 

W~(~')~ - by restricting v on W ~, ,  tha t  is, 

v ~ ( ¢ ~  (x)) = ¢ ~ ) ~ ( v ( x ) ) .  

Likewise, a measure space isomorphism Vn: W n~ --* W~(7~)~-: 

Yn(¢n~(x))=¢~n)~(v(x)) 

Similarly, we have 

Then  we see tha t  

U n .  • Vn = Vn" U n" .  

Obviously, by definition of the maps V p  and Vn 

7r~(7~)~. P~ 

Finally, let us define measure space isomorphisms: 

Cp = 0~.  V~, 

Cn = On. Vn. 

We note 

¢ ~  . flq = Lq . ¢1~. 

Let x E X and set v ( x )  = (y,  l).  By Lemma 5.3, z E X is obtained so tha t  

(y, z) E 79, and n ( y ,  z )  = l. 

onvu(¢~, (x)) = ou(¢~l~l~(~(x))) 

= 0n(¢~lnla(~, t)) 

= o n ( ¢ ~ ( z ,  o)) 

= ¢(z). 

is defined. Then,  

uv~. v ~ ( ¢ ~ ( x ) )  = u~,(¢~,(v(x)) = ¢ ~ ( R .  v(x)) 

= ¢~, (v .  R(x)) = Y~,. V ~ ( ¢ ~ , ( x ) ) .  
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Therefore, 
d#R fx) d-fiR. 

log d# " = l o g ~ ( y , l )  

= log ~pR (z, 0)) 

= f(~(z)) 

Thus the measure # and these conjugacy maps Ov and 0n satisfy the properties 

in the theorem. ! 

6. Complete invar ian t  

In this section we will show a complete invariant for orbit equivalence of inclusions 

S C T~ of amenable type IIIo ergodic measured discrete equivalence relations with 

finite index. 

We set 

D =  {((G,H, Go), ({Ft},{St},Tr))} 

by setting 

T ( n , s )  = ((v, H, Co), 

where { P , H  C G, ac}  is the canonical system for S C T¢ and Go = 

{g e GI mode5 ag = Id}. 

where: 

1. G is a finite group, Go a normal subgroup of G and H a subgroup of G 

which does not contain any non-trivial normal subgroup of G, 

2. {St} is an ergodic, aperiodic non-singular flow, {Ft} is an ergodic G/Go- 

extension of {St} and r is the factor map, lr. Ft = St .  r (t E R). 

Let us define a map T: 

{(TO, S) I T¢ an amenable ergodic relation of type IIIo and 
$ an ergodic subrelation with [T¢: S] < oc} 

--* D 
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Definition 6.1: We say that 

' F' S' 7r' ((G,H, Go),({Ft},{St},~r))and ((G' ,H' ,Go),({  t},{ t}, ) ) in :D 

are conjugate if there is a group isomorphism p: G + G ~ with p(H) = H', 

p(Go) = G~o and if the group extensions ({Ft}, {St}, 7r)) and ({F/}, {S[}, lr')) are 

conjugate. 

THEOREM 6.1: The map T is bijective up to orbit equivalence and conjugacy. 

Proof'. We already saw in Proposition 3.1 that if S C 7Z and $' C Tt' are 

orbit equivalent then T(7~, S) and T(7~ ~, S') are conjugate. In order to see the 

surjectivity of T let us construct a model having the given data ((G, H, Go), 

({Ft}, {St}, ~r)) E D. Let K = C/Go and 

Ft(z, k) = (Stz, k .  O(t, z)), (z, k) E Y x K 

where 8(t, z) E K,  and 

~(z, k) = z. 

Let Y = 1-In~___oo G and a be the Bernoulli shift on Y with the infinite product 

measure of the uniform measure on each coordinate space G. Let ¢ be a type 

III1 non-singular transformation of a Lebesgue space (D, P). Let F C R be an 

arbitrary countable dense subgroup. Construct a product measure space 

X = ~ x Z x K x R x Y x G .  

Let us define the transformations S~ ('y E F) , ¢, ~ and a~ (l E G ) acting on x 

as follows. For (w, z, k, u, y, q) E X, set 

-S.r(w, z, k, u, y, g) =(w, S.rz, k . 0(% z), u + "y - log6~,( S.yz, z), y, g), 

~(~, z,  k, ~, ~, g) =(¢~,  z,  k, u - log~p ( ¢ ~ ,  ~), ~, g),  

Y(w, z, k, u, y, g) --(w, z, k, u, ay, Yo" g), 

Oil(O3 , Z, ]g,U, y,g)  :(~d, Z, [/]Go" k ,?z ,y ,g . / -1 ) .  

Here Y0 denotes the 0-th coordinate of y. Let ~ (resp. S) be the relation generated 

by the transformations S~, "r E F, ¢ , ~  and az, I E G (resp. S~, 7 E F, ¢ , ~  and 

al, l E H). The action aa commutes with both Sr  and ~. So if we let P be 

the relation generated by S~ ,'y E F, ¢, and Y, then {~' ,H C G, aa}  gives us the 

canonical system for the inclusion S C 7~. Moreover, it is not hard to see that 
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1. {9 E G]mod~ag = id.} = Go, 

2. z "  = z × K, z ~ = z ,  ~ ( z ,  k) : ~(z,  k) = z, 

3. FtP= Ft, F ~  = St. 

Next, we will show the injectivity of T (up to orbit equivalence and conjugaey) 

via Proposition 6.1. The key of the proof is to replace a given conjugacy map 
,p, 

of factor maps 7r~ and 7r n, by a eonjugacy map which commutes with the left 

translations and to apply the cowing lemma developed by Y. Katznelson and B. 

Weiss [KaWe]. 

Assume 

and 

= ({ t } , {  t }, ~ ) )  T(7¢, 8) ((G, H, Go), F 7=' F T¢ 7r p 

T ( n ' , s ' )  ( ( a ' ,  ' ' v' ~' v ' )  = H , G o )  , ({F t },{F/ },Trn, ) 

are conjugate. We may and do assume G = G ~, H = H',  Go = G~. We set 

K = G/Go and L = {[h]Go] h E H}. Choose and fix an equivalent a-finite 

infinite lacunary measure tt which is ~v-invariant. We let R E N[Pu] N [P] be 

the normalizer of the discrete decomposition of P with respect to # and let f(-) 

be the measurable function of W 7¢. such that 

log ~pR(x) -- f(~T~, (X)). 

Corresponding to the measure p, Proposition 4.2 says that  there are measure 

space isomorphisms ¢;v: W p- ~ E × K, eta: W n" --+ E and an ergodic 

non-singular transformation U of the measure space E and a group extension 

UK: (w, q) E E x K ~ (Uw, q. k(w)) E E × K satisfying the following properties: 

Pu 
1. (¢~,¢T~) is the conjugacy map of the extensions (U ~'., UT%,TrT~,) and 

(uu, u, ~u). 

2. Cp . /3q = Lq " ¢p (q E K).  

The flow spaces Z p and Z n are naturally identified with the spaces (W p~ , f .  

7rn, ) and (W re. , ])  respectively, on which each flow built under a function acts. 

Through this identification, 

(¢~, × Id)- Ft p -  (¢~, × Id) -1 = ( E  x K, Vg,  f (w) × Id)t, 
1. 

(¢n  × Id).  F ~ -  (¢n x Id) -1 =(E,  U, f(w))t ,  
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2. (¢7) x Id) • Aq. (¢7) x Id) -1 = Lq X Id, q E K, 

where Aq is identified with j~q x Id. 

Our assumption means that there exist a measure space E' ,  a non-singular 

transforamtion U', a K-extension U~: and measure space isomorphisms ¢: E --* 

E '  and 4): E x K ~ E '  x K such that 

¢ . = . 4) ,  ¢ . u = u '  . ¢ 

and such that the extensions (FT)', F ze', rE: ) and (U~, U', f '  x Id) are conjugate, 

Then due to Theorem 2.4, we can choose the above where ] ' ( . )  = f ( ¢ - l ( . ) ) .  

map 4) so that  
4).v  =vk- 4), 

¢ .  Lq =Lq . 4) (q E K). 

This observation will be very important in the proof of injectivity. (See also the 

remark after the proof of Theorem 6.1.) 

If we apply Theorem 5.1, we obtain an equivalent a-finite lacunary measure 

#' of 7~' which is a~-invariant, a non-singular transformation R' E N[P~,] M [P'] 

and measure space isomorphisms ~bT),: WT)'-' --* E ~ x K and Cze,: W Te''' --* E '  

satisfying the following properties: 
! 

1. (¢7),, CTe,) is a conjugacy of the group extensions (VT)',', vTe', ' , zr~', ) and 

(vk, v', 

2. fTe' ,(.) = f'(~bTe'(')), 

3. ¢7), " /31q = Lq . ¢7),. 

Thus, we have shown the following proposition: 

PROPOSITION 6.1: I f  T(T~,S) and T(?~' ,S ')  are conjugate, then there exist 

equivalent a-finite lacunary aa (resp. a~)-invariant measures p and #', non- 

singular transformations R E N[P~,] and R' E N[P'~,], measurable functions f 

on W ~  and f '  on W~' of positive lower bound respectively, and a measure space 

isomorphism O: WP~ --* W~' satisfying the following properties: 

1. O. UP~ = UP'~ ' • O, O. modT)~ ag = modT), , a~- 8 (g E G), 

2. 7: '=~.xnZ, P'=P'~,,xn, Z, 
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3. log d-e-~/X~ d , ,  I = f ( ( n , ( x ) ) ,  log d-eL-~t~q ' , X' dr' , - J  = f a n d  = 

f ' (O(¢n ,  (x))), where gq = modp,  as,  and g'q = modp,,  a~ (q = [glao). 

The above proposition will show us how well an idea of the copying lemma 

developed by Y.Katznelson and B.Weiss ([KaWe]) works in a proof of our main 

theorem. 

Definition 6.2: 

1. A tower ( = (P~, T~) on a measurable subset E C X consists of a finite 

partit ion P~ = {Eili  E A} of E, and a finite family of partial transforma- 

tions T~ = {ei,j E [T~]. I i, j E A} satisfying 

Dom(ei,j) = Ej, Im(ei,j) = E{, 

ei,j • ej,k = ei,k, ei,i = IdlE~. 

We call each subset El a cell of the tower. The tower ( is also considered 

as the finite subrelation on E defined by {(ei,jx, x)] x E Ej ,  i , j  E A}. 

2. Let ~i,i = 1,2 be towers on a measurable subset E,  and let P~, = 

{E~ia  E Ai} and ~ ,  = {e~,~] a , g  E hi}. We say that ~2 refines ~1 

if 
A2 = Al x F (F a finite set ), 

E~ = U E(~,~) (~ E A1) and 
-~EF 

e(~,~),(~,~) = e~,~ on E(~,~) (a, g E A~,'y E F). 

Choose and fix an (~ E A1, and define the tower 71 = (Pn,:rv) on E~ by 

setting 

7). = {E(.,~)I ~ E r } ,  = e r } ;  

then we denote ~2 by ~1 X 77 and call it a product tower. 

From now on we write 

U =  U " ,  U ' =  U " , ' ,  [g] = [g]o0. 

By f ( z ,  w),  where w E W p~ and z = U~w for some n, we mean the cocycle 

f ( n , w ) .  

As usual, we identify each ergodic component ~p, (x) with a point in W p,  

and consider a map x E X --* ~p~ (x) E W p. as the natural surjection. Let us 
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take a probability measure v on W p- which is ~K-invariant and is equivalent 
- 1  with the pushforward measure #(~:g (-)). Then there exist uniquely determined 

conditional measures #(-]w) supported on the fibre {x e XiCp.(x) = w}, ~o E 

W p, such that  for any f C LI(X, #), 

f f(x)dt*(x)= fw~, ~ v(&o)fc /(x)~(dx,~o). 0,~ (*)= 

We note that  almost all measures #(.]w) are non-atomic and a-finite and infinite. 

Likewise, by setting 
= 

we have the conditional measures #'(-Iw'), w' E W*"~', i.e. 

We note that  L,' is ~ invariant. 

Continuation of the proof of Theorem 6.1: We are finally ready to complete the 

proof of Theorem 6.1. Let us note that every amenable ergodic relation admits 

a refining sequence of towers of the whole space satisfying that  the countable 

union of the corresponding increasing finite subrelations coincides with the whole 

relation and that  all cells of the towers generate the whole a-algebra. 

Firstly we choose and fix measurable subsets Xo C X and X~ C X '  with 

= d(Xale( )) < o o ,  a . e .  e w 

We also take a P x~ G-tower {ei,j[ i,j E A} of the set X0. We put 

Ej = Dom(ei,j). 

Corresponding to this tower, we choose a finite partition 

{<l i  e a} 

of X~ such that  

a .e .w.  

We are going to show that  for an arbitrary fixed index i0 E A and for some 

measure preserving isomorphism ¢: E/o --+ E~o, there exists a P x~ G-tower 
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{e~,jl i, j • h} of the set X~ and an extended invertible measure  preserving m a p  

¢: X0 --* X~ such tha t  

Dom(e~,j) = E~- ,  Im(e~,j) = E~, 

¢. eu(x) = e~,~. ¢(x) (x • Ej), 
t . R t - n  t ['p t ,I ag • R - n .  ei,j • IdlA • [7),], ¢~ ag • ei, j • IdJ¢(A) • t /z j, 

where  A C Ej .  We note tha t  if o~ 9 • R -'~ • ei,j • IdIA • [79u], then g and n are 

uniquely determined.  

Each ej,io is of the form: 

ej,io x = o~9 • R - n .  ~ x  ( x  • E i o ) ,  

where ~ /e  [79u], with Dom(7)  = Ei 0, and g = g ( x , j )  • G , n  = n ( x , j )  • Z. As 

if necessary one can decompose each celt of  the tower into an a t  most  countable  

number  of disjoint sets on which bo th  g ( x , j )  and n ( x , j )  are constant ,  we may  

and do assume tha t  g(x ,  j )  and n(x ,  j )  are functions of only j and write 

g( j )  = 9 ( x , j ) ,  n ( j )  = n ( x , j )  (x  • E~o). 

Since 

#'(E~o t O(w)) = I.z(Eiol w)  a.e. w E W p~, 

we have a # - #~ preserving i somorphism ¢: Eio ~ E~ o such tha t  

~ ' (¢(A)I  0(a~)) = ~(AI ~o) a.e. ~ • W ~" (VA • Eio n B) 

and such tha t  

¢(¢~. (x) n E,o) = 0 ( ¢ ~  (x)) n E~o, 

where we consider @ ,  (x) and 0 ( ¢ ~  (x)) as subsets of X and X '  respectively. 

Then  

# ' (r ig( j ) .  R'-n(J)(E~o)[/3[~g(j)] • V '- '~(j) • 0(co)) 

-1 
' ( d u t U t - n ( j )  (O(W))) t :E '  

=d ' ( v ' -~ ( ' ) ° (~ ) ' ° (~ ) )  " \ ~ . " ~ t ~o O(co) ) 

[ d v U _ n ( j )  \ - 1  
=e :(v-'('>"'~') . ~ ~ (co)) . .(E,o} co) 

( duU-n(J) -I \ 

(co)) • #('~(E~o)l co) 
k du / 
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(where 7 • [7)~]. with e j #  o = a g U )  . R - ' ~ ( j )  . 7) 

=#(c~o(J) " R-nO)"  7(Eio)[ 3[o(J)]" U-~(J)(w) ) 

=~(e~ (&o)13to(~)l " u-n(~)(~))  

=p(Ej l  3[9(J)] • U-n(J)(~)) 

=~'(E~l ~t'~(J)l "U'-n(J) "O(~)) 

where we use 0(3Mj)] • U-n(J)(w)) = 3[g(j)] " U'-'~(J)(0(w)). So, using Hopf- 

equivalence by 7~',,, we obtain h~ • [7)'~,]. such that 

t l~ l - -n (J ) ( l~ l .  Dom(h~) = c~o(j) . .o ~--~oJ, 

Im(h~) ej .  

These partial transformations give us partial transformations e~,io: E~o ~ E~ by 

setting 

' x'  ' ' . R ' - ' ~ O ) z  ' ( x ' • E ~ o ) .  e j , i o  = h j  • ~ g ( j )  

Then, 

e~,i o • [p' ×. ,  V]., 
D i i om(ej,io) = Eio, 

Im(e~.,,o) = Ej, 

0,,~, (e~,,o~) = ~io(J)J "u'-n(J)(¢~". '  (~))' 

s o .  n -~ • ej,,o" IdlA • [PA. <* "'o" n' -~"  e),,o" IdI,(A) • [~".,]., 

where A C Eio. We note that 

ej,io e [P x ~ H] .  ¢~ g(j) • H ¢* e~,io • [7 )' x ~, H]. .  

Now let us extend ¢ to a # - #' preserving measure isomorphism Xo ~ X~ by 

setting for each j 

~z ' (z e Ej). ---- e j , i o  • ¢ • e i o , j X  

Set 
t i --1 

e i o , j  = e j , i o  , 

e~ , l  I I 
-= e j , i o  • e io , t  , 

~ ' =  {e~,ll j , !  e n}. 

Thus we have constructed the desired P' x~, G-tower ~' = (e~,jl i, j E A} of the 

set X~. 
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We take a P~ x~, G-tower ~ of the set E~0 and a product tower ~' z ~?' of 

~t and ~ so that the refinement ~' x ~ of ~ approximates S~-orbits and the 

measurable subsets of X~ in some fixed precision. Again take a corresponding 

partition of the set E~ 0 and copy the tower ~' into this set in the same way as 

the previous argument. Apply again this procedure and contiune back and forth 

in this fashion. In the limit we obtain a p - #~ preserving measure isomorphism 

¢: X0 ~ .¥~ satisfying that for a.e. x, 

¢(p x~ GIxo(X)) =7:" x,~, Glx$(O(x)), 
¢(p x,:,, Hlxo(X)) =P' x~, g l x ~ ( ¢ ( x ) )  , 

where 7¢1x o means the restriction of the relation T~ to the set Xo. As $ is of 

type III, we can find a countable parition {Xil i >_ 0} (resp. {X'il  i > 0}) of 

X (resp. X')  and partial transformations d~ E IS], (resp. d~ E [8'],) such that 

Dom(di) = Xo and Im(d~) = .¥~ (resp. Dom(d~) = X~ and Im(d~) --- X~). Then 

the map ¢: X0 --* X~ can be extended to an invertible map from X onto X ~ by 

setting 

¢(dix) = d~(¢(x)), x e X0. 

Then, obviously 

{ ¢(~(x)) = w(¢(xl), 
¢(S(x)) = s'(¢(x)). . 

Remark 6.1: The part of the proof of Theorem 6.1 after Definition 6.2 shows us in 

general that if a countable amenable group G acts on a type IIIo amenable ergodic 

relation P as normalizers, then the pair of a normal subgroup {g e G]a 9 E [P]} 

and a conjugacy class of m o d ~ a a  (up to the commutant of the associated flow 

F p) is a complete invariant. This is known by S. I. Bezuglyi and V. Ya. Golodets 

in [BeGo]. Our proof using a copying lemma is very simple. 

7. Splitting problem 

Let Q be an ergodic relation of type III and {T~0, ,So} be a pair of a type II ergodic 

relation and a subrelation. Taking the product relations Q x T~0 and Q x So, 

we obtain a type III inclusion Q x So C Q × 7¢0, though. But apparently, this 

inclusion is essentially a type II inclusion. In this case we say that  the inclusion 

is splitting. One can easily see that if $ C 7~ is splitting then F S = F 74. But 

the converse is not true. 
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PROPOSITION 7.1: Suppose that [T~: ,S] < oo and that Tt is amenable and of 

type IIIo. Let {P, H C G, aa} be the canonical system for ,S C T~ and Go = 

{g E G[ mod~ a 9 = Id}. Then the following are all equivalent: 

1. The inclusion ,S C T~ is splitting. 

2. F re = F p. 

3. G o = G .  

Proof'. The direction (1) =~ (2) is obvious. (2) implies IKI = 1, i.e. (3) holds. 

The direction (3) ~ (1) is not trivial. In fact, we need the assumption that  

T~ is amenable. In the proof of surjectivity of the map T in Theorem 6.1, we 

constructed a model having those complete invaxiants. If Go -- G, then the 

relation and the subrelation ,S c T/constructed there is of the form Q x ,So c 

Q × 7~o, where 7~0 and ,So are of type II. Then, due to Theorem 6.1, we see this 

model is unique. Therefore (1) holds. I 

8. I n t e r m e d i a t e  s u b r e l a t i o n  

By .4, we denote an intermediate subrelation between 7¢ and S which is defined 

by 

P x~ (H V Go), 

where H v Go means the group generated by the subgroup H and Go which is 

also a subgroup of G (see Sut[1]). We axe concerned with the following two kinds 

of the inclusions S C 7~: 

(1) A = $. 

(2) z¢ = •. 

I t  is easily seen that  

(1) ~=~ Go = {e} 

and that  

(2) ~ F 7¢ = F s ~ G = H Y Go ~ K = L. 

In this section we will investigate these two classes. 

PROPOSITION 8 . 1 : , 4  = S if and only i f  the factor map ~r~ (Ftn~r~ ~- ~r~Ft s )  is 

s ]  to 1. 
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Proob We note that [7~: S] = [G/H] and that zr~ is [K/L[ to 1. If Go = {e}, 

then K = G, L = H. Hence the factor map is [G/H[ = [T/: S] to 1. Conversely 

if the factor map r ~  is [7~: S] = [G/H] to 1, then 

IG/Gol = I K I  = I L l .  I K / L I  = I L l .  IG /H I  = IH/HoI  " IG /H I  = IG/Hol  

where H0 = H n Go. Hence, Ho = Go. On the other hand, the subgroup H does 

not contain a non-trivial normal subgroup of G. Therefore, Go -- {e}. | 

THEOREM 8.1 (Hamachi-Kosaki [HaKo2]): Suppose A = S and that 7~ is 

amenable and of type IIIo. Then the conjugacy class of a finite extension 

(F  S, F n,  7r~) is a complete invariant for the orbit equivalence o r s  C Tt. 

Proof: Since K = G and L = H,  by Theorem 2.4, (F ~ ,F  Te,Trpn,L) is the 

minimal group cover of the extension (F  S, F Te, ~rsn). Therefore a conjugacy of 

(F  s, F n,  7rsn) implies a conjugacy of the extension (F p, F n, zrPn). By the main 

theorem we see that the conjugacy class of the extension (F  8, F n, Ir~) is a com- 

plete invariant. | 

As for the case where 7~ -- A, since both the flow data from 7~ and S respec- 

tively coincide, the inclusion might occur in a type II level. However, this is not 

true because of our criterion on splitting (Proposition 7.1). So therefore this type 

of inclusion will be interesting. Combining the fact K = L and Theorem 6.1 we 

immediately have 

PROPOSITION 8.2: In the case T~ = ~4 and amenable type IIio case, the extension 

( F p, F s, zr~) is an ergodie group K-extension and the collection of ( ( G, H, Go), 

(F  p, F $, 7rsP)), where G = H v Go, is a complete invariant for the inclusion 

SC7~. 

In Proposition 3.1(b) of [Sut2] it is claimed that the triple (G,H, Go) is a 

complete invariant in case of 7~ = A. However, the flow data (F p, F S, 7r7~) are 

missing in the invariant which he obtained. As a matter  of fact, the flow data 

in case of 7~ = A give us a lot of non-orbit equivalent inclusions as seen in the 

following remark. 

Remark 8.1: By the construction of S C T~ in the proof of the surjectivity of 

the map T in Theorem 6.1, if we have a family of non-conjugate group G/Go 

extension {({F~},{S~},Tr~}) I A C A} where G = H v Go and G ~ Go, then 



282 T. HAMACHI Isr. J. Math. 

we obtain the corresponding family of S~ C 7-¢x, A E A, which are mutually 

non-orbit equivalent and non-splitting. Examples of an uncountable family of 

non-conjugate G/Go extensions are known for instance in [Rudl] and [Rud2] in 

case of G -- $3, H -- $2 C $3 and Go = Z3 C $3. 
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